
Lecture notes for Abstract Algebra: Lecture 17

1 Rings

Definition 1. A nonempty set R is a ring if it has two closed binary operations,
addition (+) and multiplication (·), satisfying the following conditions.

1. a + b = b + a for a, b ∈ R.

2. (a + b) + c = a + (b + c) for a, b, c ∈ R.

3. There is an element 0 ∈ R such that a + 0 = a for all a ∈ R.

4. For every element a ∈ R, there exists an element −a in R such that a+(−a) = 0.

5. (a · b) · c = a · (b · c) for a, b, c ∈ R.

6. For a, b, c ∈ R:

a · (b + c) = a · b + a · c (a + b) · c = a · c + b · c.

This last condition, the distributive axiom, relates the binary operations of addition
and multiplication. Notice that the first four axioms simply require that a ring be an
abelian group under addition, so we could also have defined a ring to be an abelian
group (R,+) together with a second binary operation satisfying the fifth and sixth
conditions given above. If there is an element 1 ∈ R such that 1 6= 0 and 1a = a1 = a
for each element a ∈ R, we say that R is a ring with unity or identity. A ring R
for which ab = ba for all a, b ∈ R is called a commutative ring. The product a · b
will sometimes be written as simply ab.

Definition 2. A commutative ring with identity is called an integral domain if

a.b = 0 ⇒ a = 0 or b = 0.

A non-zero element a ∈ R such that a.b = 0 for some non-zero element b ∈ R, is
called a divisor of zero.

Definition 3. A commutative ring with identity where every non-zero element
has a multiplicative inverse is called a field.

Example 4. The integers form a ring. In fact, Z is an integral domain. Certainly if
ab = 0 for two integers a and b, either a = 0 or b = 0. However, Z is not a field. The
only integers with multiplicative inverses are 1 and −1.
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Example 5. We can define the product of two elements a and b in Zn by ab ( modn).
For instance, in Z12, 5 · 7 = 11 (mod 12). This product makes the abelian group Zn

into a ring. Certainly Zn is a commutative ring; however, it may fail to be an integral
domain. If we consider 3 · 4 = 0 (mod ) in Z12, it is easy to see that a product of
these two nonzero elements in the ring is equal to zero. The elements 3 and 4 are
zero divisors in Z12.

Example 6. Consider the ring R = Zn. Let x ∈ R. The existence of an element
y ∈ R such that

x · y ≡ 1 (modn)

is equivalent to the existence of y, z ∈ Z satisfying the equation

xy − 1 = nz ⇐⇒ xy − nz = 1.

This last equation is equivalent to gcd(n, x) = 1 and therefore an element x ∈ Zn is a
unit if and only if the greatest common divisor gcd(x, n) = 1. In particular, the
ring Zp, for p a prime number, is a field since a prime number has gcd(p, x) = 1
for every 0 < x < p.

Example 7. Under the ordinary operations of addition and multiplication, all of the
familiar number systems are rings with unit: the rationals, Q; the real numbers, R;
and the complex numbers, C. Each of these rings is in fact a field.

Example 8. The following example, also referred to as Hamilton’s quaternions H,
is an example of a non-commutative ring where every non-zero element has a multi-
plicative inverse: this is referred to as a division ring. Consider

1 =

(
1 0
0 1

)
, i =

(
0 1
−1 0

)
, j =

(
0 i
i 0

)
, k =

(
i 0
0 −i

)
and H = {a1 + bi + cj + dk | a, b, c, d ∈ R}. The rule of multiplication are done using
the relations:

i2 = −1, j2 = −1 k2 = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j

To show that the quaternions are a division ring, we must be able to find an inverse
for each nonzero element. To that end, we observe the identity:

(a1 + bi + cj + dk)(a1− bi− cj− dk) = a2 + b2 + c2 + d2.
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Remark 9. Let R be a ring and S a subset of R. Then S is a subring of R if and
only if the following conditions are satisfied.

1. S 6= ∅.

2. r · s ∈ S for all r, s ∈ S.

3. r − s ∈ S for all r, s ∈ S.

For example, the ring nZ is a subring of Z. Notice that even though the original ring
may have an identity, we do not require that its subring have an identity. We have
the following chain of subrings:

Z ⊂ Q ⊂ R ⊂ C.

Example 10. The set of 2 × 2-matrices with entries in R form a ring R, denoted
M2(R). This ring is R = M2(R) is not a field or an integral domain because is
not commutative. Explicitly we can find matrices like for example

M =

(
1 1
2 2

)
that do not admit an inverse. It is also not an integral domain since we can get

M1 ·M2 =

(
0 0
3 2

)
·
(

0 −2
0 3

)
=

(
0 0
0 0

)

meaning that M1 =

(
0 −2
0 3

)
and M2 =

(
0 0
3 2

)
are zero-divisors in R. Similar

calculations can be made for the ring Rn of n× n-matrices with real coefficients.

Example 11. Consider the subset T of upper triangular matrices in R, then T is a
subring of R. How do they look like?

M =

(
a b
0 d

)
The multiplication of two upper triangular matrices will again be upper triagular:

M1 ·M2 =

(
a b
0 d

)
·
(
a′ b′

0 d′

)
=

(
aa′ ab′ + bd′

0 dd′

)
.
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