Lecture notes for Abstract Algebra: Lecture 17

1 Rings

Definition 1. A nonempty set R is a ring if it has two closed binary operations, addition (+) and multiplication (\cdot) , satisfying the following conditions.

- 1. a + b = b + a for $a, b \in R$.
- 2. (a+b) + c = a + (b+c) for $a, b, c \in R$.
- 3. There is an element $0 \in R$ such that a + 0 = a for all $a \in R$.
- 4. For every element $a \in R$, there exists an element -a in R such that a+(-a)=0.
- 5. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for $a, b, c \in R$.
- 6. For $a, b, c \in R$:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 $(a+b) \cdot c = a \cdot c + b \cdot c.$

This last condition, the distributive axiom, relates the binary operations of addition and multiplication. Notice that the first four axioms simply require that a ring be an abelian group under addition, so we could also have defined a ring to be an abelian group (R, +) together with a second binary operation satisfying the fifth and sixth conditions given above. If there is an element $1 \in R$ such that $1 \neq 0$ and 1a = a1 = afor each element $a \in R$, we say that R is a **ring with unity or identity**. A ring Rfor which ab = ba for all $a, b \in R$ is called a **commutative ring**. The product $a \cdot b$ will sometimes be written as simply ab.

Definition 2. A commutative ring with identity is called an **integral domain** if

 $a.b = 0 \implies a = 0 \text{ or } b = 0.$

A non-zero element $a \in R$ such that a.b = 0 for some non-zero element $b \in R$, is called a divisor of zero.

Definition 3. A commutative ring with identity where **every non-zero element** has a multiplicative inverse is called a field.

Example 4. The integers form a ring. In fact, \mathbb{Z} is an integral domain. Certainly if ab = 0 for two integers a and b, either a = 0 or b = 0. However, \mathbb{Z} is not a field. The only integers with multiplicative inverses are 1 and -1.

Example 5. We can define the product of two elements a and b in \mathbb{Z}_n by $ab \pmod{n}$. For instance, in \mathbb{Z}_{12} , $5 \cdot 7 = 11 \pmod{12}$. This product makes the abelian group \mathbb{Z}_n into a ring. Certainly \mathbb{Z}_n is a commutative ring; however, it may fail to be an integral domain. If we consider $3 \cdot 4 = 0 \pmod{1}$ in \mathbb{Z}_{12} , it is easy to see that a product of these two nonzero elements in the ring is equal to zero. The elements 3 and 4 are zero divisors in \mathbb{Z}_{12} .

Example 6. Consider the ring $R = \mathbb{Z}_n$. Let $x \in R$. The existence of an element $y \in R$ such that

$$x \cdot y \equiv 1 \,(\mathrm{mod}\,n)$$

is equivalent to the existence of $y, z \in \mathbb{Z}$ satisfying the equation

$$xy - 1 = nz \iff xy - nz = 1$$

This last equation is equivalent to gcd(n, x) = 1 and therefore an element $x \in \mathbb{Z}_n$ is a unit if and only if the greatest common divisor gcd(x, n) = 1. In particular, the ring \mathbb{Z}_p , for p a prime number, is a field since a prime number has gcd(p, x) = 1 for every 0 < x < p.

Example 7. Under the ordinary operations of addition and multiplication, all of the familiar number systems are rings with unit: the rationals, \mathbb{Q} ; the real numbers, \mathbb{R} ; and the complex numbers, \mathbb{C} . Each of these rings is in fact **a field**.

Example 8. The following example, also referred to as Hamilton's quaternions \mathbb{H} , is an example of a non-commutative ring where every non-zero element has a multiplicative inverse: this is referred to as **a division ring**. Consider

$$\mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{j} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

and $\mathbb{H} = \{a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R}\}$. The rule of multiplication are done using the relations:

$$i^2 = -1, \quad j^2 = -1 \quad k^2 = -1$$

 $ij = k, \quad jk = i, \quad ki = j$
 $ji = -k, \quad kj = -i, \quad ik = -j$

To show that the quaternions are a division ring, we must be able to find an inverse for each nonzero element. To that end, we observe the identity:

$$(a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k})(a\mathbf{1} - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}) = a^2 + b^2 + c^2 + d^2.$$

Remark 9. Let R be a ring and S a subset of R. Then S is a subring of R if and only if the following conditions are satisfied.

- 1. $S \neq \emptyset$.
- 2. $r \cdot s \in S$ for all $r, s \in S$.
- 3. $r s \in S$ for all $r, s \in S$.

For example, the ring $n\mathbb{Z}$ is a subring of \mathbb{Z} . Notice that even though the original ring may have an identity, we do not require that its subring have an identity. We have the following chain of subrings:

$$\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}.$$

Example 10. The set of 2×2 -matrices with entries in \mathbb{R} form a ring R, denoted $\mathbb{M}_2(\mathbb{R})$. This ring is $R = \mathbb{M}_2(\mathbb{R})$ is **not a field or an integral domain** because is not commutative. Explicitly we can find matrices like for example

$$M = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$

that do not admit an inverse. It is also not an integral domain since we can get

$$M_1 \cdot M_2 = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & -2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

meaning that $M_1 = \begin{pmatrix} 0 & -2 \\ 0 & 3 \end{pmatrix}$ and $M_2 = \begin{pmatrix} 0 & 0 \\ 3 & 2 \end{pmatrix}$ are zero-divisors in R. Similar calculations can be made for the ring R_n of $n \times n$ -matrices with real coefficients.

Example 11. Consider the subset T of upper triangular matrices in R, then T is a subring of R. How do they look like?

$$M = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

The multiplication of two upper triangular matrices will again be upper triagular:

$$M_1 \cdot M_2 = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} = \begin{pmatrix} aa' & ab' + bd' \\ 0 & dd' \end{pmatrix}.$$