Lecture notes for Abstract Algebra: Lecture 17

1 Rings

Definition 1. A nonempty set R is a ring if it has two closed binary operations, addition $(+)$ and multiplication (\cdot), satisfying the following conditions.

1. $a+b=b+a$ for $a, b \in R$.
2. $(a+b)+c=a+(b+c)$ for $a, b, c \in R$.
3. There is an element $0 \in R$ such that $a+0=a$ for all $a \in R$.
4. For every element $a \in R$, there exists an element $-a$ in R such that $a+(-a)=0$.
5. $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for $a, b, c \in R$.
6. For $a, b, c \in R$:

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

This last condition, the distributive axiom, relates the binary operations of addition and multiplication. Notice that the first four axioms simply require that a ring be an abelian group under addition, so we could also have defined a ring to be an abelian group $(R,+)$ together with a second binary operation satisfying the fifth and sixth conditions given above. If there is an element $1 \in R$ such that $1 \neq 0$ and $1 a=a 1=a$ for each element $a \in R$, we say that R is a ring with unity or identity. A ring R for which $a b=b a$ for all $a, b \in R$ is called a commutative ring. The product $a \cdot b$ will sometimes be written as simply $a b$.

Definition 2. A commutative ring with identity is called an integral domain if

$$
a . b=0 \quad \Rightarrow \quad a=0 \quad \text { or } \quad b=0 .
$$

A non-zero element $a \in R$ such that $a . b=0$ for some non-zero element $b \in R$, is called a divisor of zero.

Definition 3. A commutative ring with identity where every non-zero element has a multiplicative inverse is called a field.

Example 4. The integers form a ring. In fact, \mathbb{Z} is an integral domain. Certainly if $a b=0$ for two integers a and b , either $a=0$ or $b=0$. However, \mathbb{Z} is not a field. The only integers with multiplicative inverses are 1 and -1 .

Example 5. We can define the product of two elements a and b in \mathbb{Z}_{n} by $a b(\bmod n)$. For instance, in $\mathbb{Z}_{12}, 5 \cdot 7=11(\bmod 12)$. This product makes the abelian group \mathbb{Z}_{n} into a ring. Certainly \mathbb{Z}_{n} is a commutative ring; however, it may fail to be an integral domain. If we consider $3 \cdot 4=0(\bmod)$ in \mathbb{Z}_{12}, it is easy to see that a product of these two nonzero elements in the ring is equal to zero. The elements 3 and 4 are zero divisors in \mathbb{Z}_{12}.

Example 6. Consider the ring $R=\mathbb{Z}_{n}$. Let $x \in R$. The existence of an element $y \in R$ such that

$$
x \cdot y \equiv 1(\bmod n)
$$

is equivalent to the existence of $y, z \in \mathbb{Z}$ satisfying the equation

$$
x y-1=n z \Longleftrightarrow x y-n z=1 .
$$

This last equation is equivalent to $\operatorname{gcd}(n, x)=1$ and therefore an element $x \in \mathbb{Z}_{n}$ is a unit if and only if the greatest common divisor $\operatorname{gcd}(x, n)=1$. In particular, the ring \mathbb{Z}_{p}, for p a prime number, is a field since a prime number has $\operatorname{gcd}(p, x)=1$ for every $0<x<p$.

Example 7. Under the ordinary operations of addition and multiplication, all of the familiar number systems are rings with unit: the rationals, \mathbb{Q}; the real numbers, \mathbb{R}; and the complex numbers, \mathbb{C}. Each of these rings is in fact a field.

Example 8. The following example, also referred to as Hamilton's quaternions \mathbb{H}, is an example of a non-commutative ring where every non-zero element has a multiplicative inverse: this is referred to as a division ring. Consider

$$
\mathbf{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \mathbf{j}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad \mathbf{k}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

and $\mathbb{H}=\{a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, d \in \mathbb{R}\}$. The rule of multiplication are done using the relations:

$$
\begin{aligned}
& \mathrm{i}^{2}=-\mathbf{1}, \quad \mathrm{j}^{2}=-\mathbf{1} \quad \mathrm{k}^{2}=-\mathbf{1} \\
& \mathbf{i j}=\mathbf{k}, \quad \mathbf{j k}=\mathbf{i}, \quad \mathbf{k i}=\mathbf{j} \\
& \mathbf{j i}=-\mathbf{k}, \quad \mathbf{k j}=-\mathbf{i}, \quad \mathbf{i k}=-\mathbf{j}
\end{aligned}
$$

To show that the quaternions are a division ring, we must be able to find an inverse for each nonzero element. To that end, we observe the identity:

$$
(a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k})(a \mathbf{1}-b \mathbf{i}-c \mathbf{j}-d \mathbf{k})=a^{2}+b^{2}+c^{2}+d^{2}
$$

Remark 9. Let R be a ring and S a subset of R. Then S is a subring of R if and only if the following conditions are satisfied.

1. $S \neq \emptyset$.
2. $r \cdot s \in S$ for all $r, s \in S$.
3. $r-s \in S$ for all $r, s \in S$.

For example, the ring $n \mathbb{Z}$ is a subring of \mathbb{Z}. Notice that even though the original ring may have an identity, we do not require that its subring have an identity. We have the following chain of subrings:

$$
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

Example 10. The set of 2×2-matrices with entries in \mathbb{R} form a ring R, denoted $\mathbb{M}_{2}(\mathbb{R})$. This ring is $R=\mathbb{M}_{2}(\mathbb{R})$ is not a field or an integral domain because is not commutative. Explicitly we can find matrices like for example

$$
M=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)
$$

that do not admit an inverse. It is also not an integral domain since we can get

$$
M_{1} \cdot M_{2}=\left(\begin{array}{ll}
0 & 0 \\
3 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -2 \\
0 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

meaning that $M_{1}=\left(\begin{array}{cc}0 & -2 \\ 0 & 3\end{array}\right)$ and $M_{2}=\left(\begin{array}{ll}0 & 0 \\ 3 & 2\end{array}\right)$ are zero-divisors in R. Similar calculations can be made for the ring R_{n} of $n \times n$-matrices with real coefficients.

Example 11. Consider the subset T of upper triangular matrices in R, then T is a subring of R. How do they look like?

$$
M=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

The multiplication of two upper triangular matrices will again be upper triagular:

$$
M_{1} \cdot M_{2}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \cdot\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b d^{\prime} \\
0 & d d^{\prime}
\end{array}\right)
$$

